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Overview of topics

• Model comprehensibility, visualization and knowledge discovery.

• General methodology for explaining predictive models.

• Model level and instance level explanations, methods EXPLAIN and 
IME.

• Learning with special settings: imbalanced data, cost-sensitive 
learning

• Calibration of probabilities: binning, isotonic regression.
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Visualization

• 1st rule of data mining: know your data.

• Therefore: visualizations, getting background data.

• Visualize: distributions of individual variables, their relations, etc.

• For high dimensional data sets one can use scaling.

• Clustering is useful in supervised tasks to get insight into the relation 
between predicted values Y and basic groups in the data. If unrelated,
feature set might need amendments.
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Visualizations
• Human visual perception has certain limitations:

• we see what we want to see

• we see what we see often

• it is more difficult to notice unexpected patterns

• practice in detection of unknown

• use visualizations which expose “the unknown”

4



Human pattern recognition
• We see inexistent patterns because we WANT to see them (we feel 

lost without them).
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Facts about simple visualizations

• Pie charts are a bad choice: hard to read, similar colors, slope, legend 
is too far away

• Bar chart is much better
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Pie charts jokes

• notoriously bad
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The best pie chart



Facts about simple visualizations
• bar charts, box plots can be OK

• 3D graphs are almost never OK for 2D info: spider plot, 
bowl of noodles

• take care to be clear and do not manipulate
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Predictive modeling scenario
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Explanation of predictions

• a  number of successful prediction algorithms 
exist (SVM, boosting, random forests, 
neural networks), but to a user they are
a black box

• many fields where users are very much concerned with the
transparency of the models: medicine, law, consultancy, 
public services, etc.

• Goal: a general method applicable to an arbitrary predictor.
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Model comprehensibility

• decision support: model comprehensibility is important to gain users‘ 
trust

• knowledge aquisition

• some models are inherently interpretable and comprehensible

• decision and regression trees, classification and regression rules, linear
and logistic regression

• really?
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Domain level explanation

• trying to explain the
“true causes and effects”
• physical processes

• stock exchange events

• usually unreachable except for artificial problems with known relations
and generator function

• some asspects are covered with attribute evaluation, detection of 
redundancies, ...

• targeted indirectly through the models
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Model-based explanations

• make transparent the prediction process of a particular model

• the correctness of the explanation is independent of the 
correctness of the prediction but

• better models (with higher prediction accuracy) enable in 
principle better explanation at the domain level

• iwe are mostly interested only in the explanation at the model 
level and leave to the developer of the model the responsibility 
for its prediction accuracy

13



Two flavours of explanation techniques

• model specific
• especially used for

deep neural networks

Melis, D.A. and Jaakkola, T., 2018. Towards robust interpretability with self-explaining neural networks. In Advances in 
Neural Information Processing Systems (pp. 7786-7795).

• model agnostic
• can be used for any predictor, 

• based on perturbation of the inputs
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Idea of perturbtion-based explanations

• importance of a feature or a group of features in a specific model can 
be estimated by simulating lack of knowledge about the values of the 
feature(s)
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Instance-level explanation

• explain predictions for each instance 
separately 
• this is what practitioners applying models are 

interested in

• presentation format: impact of each feature 
on the prediction value

• model-based
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Model-level explanation
• the overall picture of a problem the model 

conveys
• this is what knowledge extractors are 

interested in

• presentation format: overall importance of 
each feature, 
but also rules, trees

• model-based
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The method EXPLAIN

• “hide” one attribute at a time

• estimate contribution of attribute from

Robnik-Sikonja, M., & Kononenko, I. (2008). Explaining classifications for individual instances. 
IEEE Transactions on Knowledge and Data Engineering,, 20(5), 589-600.
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Explaining EXPLAIN

• assume an instance (x, y), components of x are values of attributes Ai

• for a new instance x, we want to know what role each attribute’s value play
in the prediction model f, i.e. to what extend it contributed to the
classification f(x)

• for that purpose
• we compute f(x \ Ai), the model's prediction for x without the knowledge 

of the event Ai = ak (marginal prediction)
• we comparing f(x) and f(x \ Ai) to assess importance of Ai = ak

• the larger the the difference the more important the role of Ai=ak in the 
model

• f(x) and f(x \ Ai) are source of explanations
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Evaluation of prediction differences

• how to evaluate f(x) - f(x \ Ai) 

• in classification we take f(x) in the form of probability

1.difference of probabilities

probDiffi(y|x)  = p(y|x)  - p(y|x\ Ai)

2.information gain (Shannon, 1948)

infGaini(y|x)  = log2 p(y|x)  - log2 p(y|x\ Ai)

3. weight of evidence also log odds ratio (Good, 1950)

odds(z) = p(z) / (1 – p(z))

WEi(y|x)  = log2 odds(y|x)  - log2 odds(y|x\ Ai)
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Implementation

• p(y|x): classify x with the model

• p(y|x\ Ai) – simmulate lack of knowledge of Ai in the model
• replace with special NA value: good for some, mostly bad, left to the mercy of 

model’s internal mechanism

• average prediction across perturbations of Ai

p(y|x\ Ai) =  a p(Ai=as) p(y|x  Ai = as) 

• use discretization for numeric attributes

• use Laplace correction for probability estimation
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Weaknes of EXPLAIN

• “hide” one attribute at a time

• estimate contribution of attribute from

• weakness: if there are redundant ways to express concept, credit is not 
assigned

• example: 

C = A1 v A2A3

explanation for instance (A1=A2=A3=1)
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The method IME

• (Interactions-based Method for Explanation)

• “hide” any subset of attributes at a time (2a subsets!)

• the source of explanations is the difference in prediction using a subset of 
features Q and an empty set of features {}

• the feature gets some credit for standalone contributions and for contributions 
in interactions
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IME: sum over all subsets
• the contributions are 

Štrumbelj, E., Kononenko, I. & Robnik-Šikonja, M., Explaining instance classifications with interactions of subsets of feature values. Data & 
Knowledge Engineering, Oct. 2009, 68(10):886-904
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Game theory analogy

• coalitional game of a players (attributes)

• players form coalitions (i.e. interactions)

• how to distribute the payout to the members of a coalition? (how to 
assign the credit for prediction)

• The Shapley value is the unique payoff vector that is
• efficient (exactly splits payoff value), 

• symmetric (equal payments to equivalent players)

• additive (overall credit is a sum of participating in coalitions), and

• assigns zero payoffs to dummy players (no contribution to any coallition).
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Shapley value

• Shapley value can be efficiently approximated
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Solution for IME: sampling

• Shapley value can expressed in an alternative formulation

• 𝜋 𝑎 is the set of all ordered permutations of a

• Prei(O) is the set of players which are predecessors of player i in the 
order O ∈ 𝜋 𝑎

• smart sampling over subsets of attributes

• computationally feasible approach
Štrumbelj, E., & Kononenko, I. (2010). An efficient explanation of individual classifications using game theory. 
Journal of Machine Learning Research, 11, 1-18
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IME algorithm

• by measuring the variance of contributions we can determing the 
necessary number of samples for each attribute
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Visualization of explanations

• instance-level explanation on Titanic data set
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Robnik-Šikonja, M. (2015), ExplainPrediction: Explanation of Predictions for Classification and Regression. 
R package version 1.3.0. http://cran.r-project.org/package=ExplainPrediction

http://cran.r-project.org/package=ExplainPrediction


Visualization of explanations

• model-level explanation on Titanic data set
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LIME explanation method

• Local Interpretable Model-agnostic Explanations)

• perturbations in the locality of an explained instance
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Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). Why should i trust you?: Explaining the predictions of any classifier. In Proceedings of 
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135-1144.



LIME explanation method

• optimize a trade-off between local fidelity of explanation and its 
interpretability

• L is a local fidelity function, f is a model to be explained, g is an 
interpretable local model g (i.e. linear model), 𝜋 𝑥, 𝑧 is proximity 
measure between the explained instance x and perturbed points z in its 
neighborhood, Ω is a model complexity measure
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LIME details

• samples around explanation instance x to draw samples z weighted by 
the distance 𝜋 x, z

• samples z are used to training an interpretable model g (linear model)

• the squared loss measures local infidelity

• number of non-zero weights is complexity 

• samples are weighted according to the Gaussian distribution of the 
distance between x and z
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LIME strengths and weaknesses

• faster than IME 

• works for many features, including text and images

• no guarantees that the explanations are faithful and stable

• neighborhood based: a curse of dimensionality 

• may not detect interactions due to (too) simple interpretable local 
model (linear model)
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SHAP

• SHapley Additive exPlanation

• unification of several explanation 
methods, including IME and LIME

• KernelSHAP: based on Shapley values which are estimated using a 
LIME style linear regression

• faster then IME but

• still uses linear model with all its strengths and weaknesses
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Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. 
In Advances in Neural Information Processing Systems (pp. 4765-4774).



Use case: breast cancer recurrence

Robnik-Šikonja, M., Kononenko, I., & Štrumbelj, E. (2012). Quality of classification explanations with PRBF. Neurocomputing, 96, 37-46.
36

Cancer recurrence within 10 years
menop binary feature indicating menopausal status
stage tumor stage 1: less than 20mm, 2: between 20mm and 50mm, 3: over 50mm
grade tumor grade 1: good, 2: medium, 3: poor, 4: not applicable, 9: not determined
histType histological type of the tumor 1: ductal, 2: lobular, 3: other
PgR level of progesterone receptors in tumor (in fmol per mg of protein) 0: 

less than 10, 1: more than 10, 9: unknown
invasive invasiveness of the tumor 0: no, 1: invades the skin, 2: the mamilla, 

3: skin and mamilla, 4: wall or muscle
nLymph number of involved lymph nodes 0: 0, 1: between 1 and 3, 2: between 4 and 9, 

3: 10 or more
famHist medical history 0: no cancer, 1: 1st generation breast, ovarian or prostate cancer

2: 2nd generation breast, ovarian or prostate cancer, 
3: unknown gynecological cancer 4: colon or pancreas cancer, 
5: other or unknown cancers, 9: not determined

LVI binary feature indicating lymphatic or vascular invasion
ER level of estrogen receptors in tumor (in fmol per mg of protein) 1: less than 5, 

2: 5 to 10, 3: 10 to 30, 4: more than 30, 9: not determined
maxNode diameter of the largest removed lymph node 1: less than 15mm, 

2: between 15 and 20mm, 3: more than 20mm
posRatio ratio between involved and total lymph nodes removed 1: 0, 2: less that 10%, 

3: between 10% and 30%, 4: over 30%
age patient age group 1: under 40, 2: 40-50, 3: 50-60, 4: 60-70, 5: over 70 years



Use case: breast cancer recurrence
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Use case: breast cancer recurrence
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Use case: B2B sales forecasting

• Goals: improve understanding of factors influencing the outcome and improve 
the sales performance 

39
Bohanec, M., Borštnar, M. K., & Robnik-Šikonja, M. (2017). Explaining machine learning models in sales predictions. 
Expert Systems with Applications, 71, 416-428.



B2B sales attributes
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B2B sales: drill in
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B2B sales: EXPLAIN and IME
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B2B sales: learning from errors
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B2B: what if
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B2B: change of distribution
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Lessons learned

• an effort needed to overcome the resistance

• human-in-the-loop is necessary to train, discuss, clean data, introduce
explanations

• with increased use users gain trust in the methodology

• human mental models tend to be biased

• joint interactive approach beats both humans and ML models

• problem with slippages
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More related work

• symbolic models
• straightforward comprehensible explanation for small models (decision trees, lists, rules)

• numeric models (mostly neural networks)
• generation of symbolic models from generated additional instances
• resulting models are large and incomprehensible

• explanations in form of nomograms for specific algorithm/model:
• logistic regression, Naive Bayesian classifier, restricted decomposable kernels for SVM (

• visualization of SVM with a separating hyperplane in a restricted subspace

• explanation of neural networks based on propagation of gradients

• sensitivity analysis
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Opportunities

• better and more focused sampling

• better local explanation models

• interactions: detect and describe

• sequences: the order of attributes is important!

• images: decison areas, super-pixels

• better visualizations: human cognitive limitations
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Conclusions

• many successful approaches but

• lots of opportunities for improvements

• legal and practical need for explanations of ML models
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Learning with imbalanced data?

• supervised learning, classification setting

• at least one class is under-represented relative to others

• easy to get high classification accuracy, but this is not what we want
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Some motivational examples

• fraud detection (credit card, insurance, stock market)

• (many) medical diagnostics

• rare diseases

• bioinformatics (translation initiation site in DNA sequence…)

• response rate in direct marketing

• oil spills in satellite images

• industrial processes fault monitoring

• document filtering
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An example 1
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52

Negative class:
N(μ1, Σ1)

μ1 = [0, 0]

Σ1 = 
1 0
0 1

200 instances

Positive class
N(μ2, Σ2)

μ2 = [2, 2]

Σ2 = 
0.2 0
0 0.2

20 instances



An example 2
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Negative class:
N(μ1, Σ1)

μ1 = [0, 0]

Σ1 = 
1 0
0 1

200 instances

Positive class
N(μ2, Σ2)

μ2 = [2, 2]

Σ2 = 
1 0
0 1

20 instances
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An example 3
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Negative class:
N(μ1, Σ1)

μ1 = [0, 0]

Σ1 = 
1 0
0 1

200 instances

Positive class
N(μ2, Σ2)

μ2 = [1, 1]

Σ2 = 
1 0
0 1

20 instances
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An example 4
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Negative class:
N(μ1, Σ1)

μ1 = [0, 0]

Σ1 = 
1 0
0 1

200 instances

Positive class
N(μ2, Σ2)

μ2 = [0, 0]

Σ2 = 
0.1 0
0 0.1

20 instances
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An example 5
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Why is the problem difficult?
• standard learners are often biased towards the majority class

• classifiers reduce global quantities (e.g., error rate), not taking the data 
distribution into consideration.

• Result: examples from the majority class are well-classified,  the minority class 
tend to be misclassified.

• small number of instances (absolute/relative rarity)

• many small subconcepts

• inappropriate classifiers (bias/variance)

• problem complexity

• inappropriate performance metrics 
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Performance metrics

• misclassification matrix
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Accuracy

• sensitive to class distribution

• (takes both columns into account)

• class relative analysis does not make sense

• sensitivity, specificity are more appropriate
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ROC 
space
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-AUC
-multiclass extensions



Classical approaches

• Typical methods for imbalanced data in 2-class classification: 

• Oversampling: re-sampling of data from positive class

• Under-sampling: randomly eliminate  tuples from negative class

• Threshold-moving: moves the decision threshold t, so that the rare class 
tuples are easier to classify, and hence, less chance of costly false negative 
errors
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Random sampling

• random undersampling 

• randomly select a set of majority instances and remove them

• problem: may miss some important subconcepts in the majority class

• faster learning

• random oversampling

• randomly select a set of minority instances, replicate them and add them to 
the learning set

• problem: overfitting, slower learning
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Informed undersampling

• K-nearest neighbor (KNN) based sampling

• several variants
• select those majority instances whose average distance to three closest minority class 

examples is the smallest

• select those majority instances whose average distance to three farthest minority class 
examples is the smallest

• for each minority class example select a given number of closest majority class examples

• …

• KNN fails in high dimensional spaces
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Informed oversampling
• idea: create new similar minority class instances

• SMOTE (Synthetic Minority Oversampling Technique)

• Xnew = (Xi’ – Xi) · δ
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SMOTE improvements
• problem of SMOTE: generates the same number of instances for each minority 

class instance disregarding its neighborhood

• Borderline-SMOTE: count overlap for KNN, generate only DANGER instances
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Oversampling with data cleaning

• SMOTE with 
removed 
Tomek links
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Clustering
based 

sampling
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Sampling combined with boosting
• Boosting idea: increase weight of the misclassified instances and 

iterate learning

• SMOTEboost: in each round the weights of minority class instances 
are increased using SMOTE

• EasyEnsemble: 
• create multiple majority class samples Ni of the same size as minority class 

examples P

• train several boosting models each with (Ni, P) as the training set

• final model is a combination of all partial AdaBoost ensemble models

• a bagged combination of boosted models
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BalancedCascade

• guided deletion
• select a majority class sample Ni of the same size as minority class examples P

• train boosting model with (Ni, P) as the training set

• delete correctly classified majority class examples from N and repeat

• final model is a combination of all partial AdaBoost ensemble models
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Generating semi-artificial data

• idea:
Use Radial Basis Function (RBF) 
network to learn properties of the 
data

• RBF learns a set of Gaussian kernels

• Gaussian kernels can be used in a 
generative mode to generate new 
data using variance matrix 
decomposition

• discrete data
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Using the generator

• generator performs implicit clustering

• data from each kernel can be generated independently and proportionally to the 
desired class distribution

• performance on original and generated data on average comparable

• use: in development, for small data sets, in simulations, preserve privacy, smooth 
data

• problems: very high dimensional data

• R package semiArtificial
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Cost-sensitive learning

• misclassification cost are NOT equal

• cost-sensitive problems are usually the ones with imbalanced class distribution 

• costs (benefits) usually presented with cost matrix C

• C(i,j) is a cost of classifying class i as class j

• optimal prediction selects class which minimizes expected loss
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Cost matrixes
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detecting exception, progressive health risk, financial loss

• not all cost matrixes make sense



Optimal classification with costs

• minimizing risk

• risk 𝑅 𝑐𝑖|𝑥 = σ𝑗=1
𝑐 𝑃 𝑐𝑗|𝑥 𝐶(𝑐𝑖 , 𝑐𝑗)

• crucial: good estimation of probabilities P(cj|x)

• calibration of probabilities
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MetaCost

• learn an ensemble with bagging

• relabel each instance according to the 

𝑎𝑟𝑔 𝑚𝑖𝑛𝑖෍

𝑗=1

𝑐

𝑃 𝑐𝑗|𝑥 𝐶(𝑐𝑖 , 𝑐𝑗)

• p (ci|x) are obtained with bagging 

• relearn with new class labels
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Integrating cost into learners

• Boosting integrates cost information through instance reweighting (AdaCost)

• SVM integrates cost by cost weighted margin or SMOTE-based sampling

• neural networks integrate cost into error function (used in probabilistic estimates, 
backpropagation, learning rate, output)

• cost-sensitive decision trees:
• decision threshold

• attribute evaluation criterion

• pruning of trees
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Active learning
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• in SVM setting class imbalance close to margin is much lower
• select instances close to margin and retrain 



Obtaining good probabilities
• When performing classification you often want not only to predict the class 

label, but also obtain a probability of the respective label. 

• This probability gives you some kind of confidence on the prediction. 

• Some models can give you poor estimates of the class probabilities and some 
even do not support probability prediction. 

• To obtain reliable probabilities from model’s scores one has to calibrate it.

• Well calibrated classifiers are probabilistic classifiers for which the output of 
the method can be directly interpreted as a confidence level. For instance, a 
well calibrated (binary) classifier should classify the samples such that among 
the samples to which it gave a predicted value close to 0.8, approximately 
80% actually belong to the positive class.
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Reliability graphs
• Reliability graphs show how 

predicted (horizontal axis) 
and actual (vertical axis) 
probabilities relate to one 
another.

• Ideally probabilities would be 
placed on the diagonal y = x 
line, meaning that for each 
band the proportion of event 
realizations would match the 
predicted probabilities.

• Left graph shows typical 
behavior of some classifiers.
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Calibration algorithms

• Note: a separate calibration data set is required

• The most popular calibration methods are
• binning histogram method, where we give number and/or 

position of splits in advance and then fix each bin with the 
correct value

• Platt’s scaling: performing logistic regression on the output of 
the model with respect to the true class labels.

• isotonic regression, which automatically generates splits 
based on the distribution of predicted probabilities and actual 
results. We fit a piecewise-constant non-decreasing function 
instead of logistic regression. Piecewise-constant non-
decreasing means stair-step shaped.
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Ethical concerns: as individual and in society

• Ubiquitous Data Mining

• Data mining is used everywhere, e.g., online shopping

• Example: Customer relationship management (CRM)

• Invisible Data Mining 

• Invisible:  Data mining functions are built in daily life operations

• Ex. Google search: Users may be unaware that they are examining results returned by data 
mining

• Invisible data mining is useful and desirable? 

• Invisible mining needs to consider privacy, efficiency and scalability, user interaction, 
incorporation of background knowledge and visualization techniques, finding interesting 
patterns, real-time, …
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Privacy, security and social impacts of data mining

• Many data mining applications do not touch personal data

• E.g., meteorology, astronomy, geography, geology, biology, and other scientific and 
engineering data

• Many DM studies are on developing scalable algorithms to find general or statistically significant 
patterns, not touching  individuals

• The real privacy concerns: 

• unconstrained access to individual records, especially privacy-sensitive information

• matching of records from different databases

• Solution 1: Removing sensitive IDs associated with the data

• Solution 2: Data security-enhancing methods

• Multi-level security model: permit access to only authorized level

• Encryption: e.g., blind signatures, biometric encryption, and anonymous databases (personal 
information is encrypted and stored at different locations)

• Solution 3: Privacy-preserving data mining methods
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Privacy-preserving data mining

• Privacy-preserving (privacy-enhanced or privacy-sensitive) mining:
• Obtaining valid mining results without disclosing the underlying sensitive data values 
• Often needs trade-off between information loss and privacy

• Privacy-preserving data mining methods:
• Randomization (e.g., perturbation): add noise to the data in order to mask some attribute values of 

records 
• K-anonymity and l-diversity: alter individual records so that they cannot be uniquely identified

• k-anonymity: Any given record maps onto at least k other records 
• l-diversity: enforcing intra-group diversity of sensitive values  

• Distributed privacy preservation: data partitioned and distributed either horizontally, vertically, or a 
combination of both

• Downgrading the effectiveness of data mining: the output of data mining may violate privacy
• Modify data or mining results, e.g., hiding some association rules or slightly distorting some classification models
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Final note
• Data mining is like life: interesting, full of surprises, funny and messy. 

Enjoy it!
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